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Is Hagan a Likely Supporter of Burr?




What does it mean to model the network?

Construct a probability distribution that

accurately approximates the network



Why build models?

» Test hypotheses
Example: Does the organization’s network exhibit
clustering?

» Simulation for theoretical exploration
Example: How should seats be assigned in a classroom to
encourage cross-racial friendships?

» Tie prediction
Example: Will cross-departmental communication ties
persist?



Advantage of ERGM

Can model how ties depend upon
each other



Modeling Interdependence

Two Classes of Questions: Covariate and Interdependence
1. Covariate
» Do legislators in the same political party collaborate more
frequently than those in opposite parties?
» Do states with democratic governments have more alliances
than those with autocratic regimes?
2. Interdependence
» Are two states at war with the same third state less likely
to be at war with each other?
» Are there popularity effects in the choice of co-authors?

ERGM: integrate effects for any forms of (1) and (2) into a
unified model of a network.




Estimation

Finding parameter values that result in a
distribution that would have produced something
similar to what we observe.



Parametric Probabilistic Modeling
and the Likelihood Framework of Inference

We observe x, a draw of a random variable X..
f is a family of probability distributions and @ is unknown.
X could be

» The dependent variable in a regression model

» An adjacency matrix

» The text in a document

9MLE = arg;nax [f(xao)]

1. In many cases, 6 MLE is asymptotically normally distributed
2. If f is exponential family, In [f(x, )] globally concave in



The Exponential Random Graph Model (ERGM)

The probability (likelihood function) of observing network N is:

exp{@’h(N)}
P(N,0) =
( ) Y neen exp{0’h(N*)}
Decomposition:
h(N) 6 exp{6'h(N)} > exp{0’h(N*)}
—— —~— . ,
Net Stats Effects + Weight N*eN

Normalizer

Flexible: h can capture virtually any form of interdependence
among the edges + covariates

Normalizing constant can make estimation difficult



ERGM Task List

What the Modeler Does:

» Conceptually defines dependencies that should/might exist
in the network.

» Defines (selects) empirical measures of those dependencies.
(i.e., h(N))

What ERGM Software Does:
» Finds most likely set of 6.

» Simulates networks so you can check model fit.



Definining h

How would we measure reciprocity?

A statistic we would expect to be high if ties were
reciprocated a lot and low if they were not
reciprocated.



Unpacking h

» Dyadic Covariate
X)=> Ni;X;
ij
» Sender Covariate

hys(N,VS) =>"VS Y Ny
i JFi

» Receiver Covariate

hvr(N,VR) =Y VR;» Ny
i jF#i

N) =Y Ni;Nji

1<j

O-llli—"0)

» Reciprocity



Unpacking h

» Popularity

hp(N) = ZNjiNki + NijNij + Ny Nj
igk

> Sociality

hs(N) = NijNix + NjuNji + NpiNi
i’j7k
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Unpacking h

» Transitivity

hr(N) = > NigNawNi

i ik

» For detailed discussions on the selection of network
statistics, see Snijders et al. (2006) and Goodreau (2007)



Interpretation of ERGM

ERGM offers an incredibly flexible model — it can be used to
investigate individual, dyad, node and network level effects.

Two levels of interpretation
1. (Network) The relative likelihood of observing N7* to
observing N7 is exp(f;), where
> 0; is the estimate of the parameter that corresponds to
statistic j.
» N7% is one unit greater than N7 on statistic j (e.g., one
more closed triangle, one more edge), ceteris paribus.

2. (Edge) P(Ny; = 1|N_;;,8) = logit™! (Z,’le er(sﬁm(zv))
» N_;; indicates the network excluding Nj;
> 6,(.”)(N) is equal to the change in h, when N;; is changed

from zero to one
» logit ™' (z) = 1/(1 + exp(—=z)) (i.e., inverse logit function)



Likelihood of New Tie
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ERGM (ML)Estimation

ML Estimation is very attractive because ERGM is a
canonical exponential family form

» Globally concave loglikelihood
» h is minimally sufficient for 8

> 0 is asymptotically normal

Estimation requires we confront... " ..\ exp{6’h(N*)}
Sum over m networks...

Nodes m (i.e., unique undirected networks)

5 1,024

10 35,184,370,000,000

15 40,564,820,000,000,000,000,000,000,000,000




Simulation-based MLE

» Normalizer is s a sum over a population of m networks.
» Solution: approximate with a random sample of networks.

Markov Chain Monte Carlo Maximum Likelihood
m is the MCMC sample size
v is the number of vertices in the network
9[0} —0 or 0[MPLE]
1=0
repeat
i=1i+1
draw N ~ P(N,80~1) by MCMC, m networks with v
C(6) = In (X7, exp [0 — 0=y h(N;) )
00!l = arg max, [Z?Zl 0'h(INy) — C/'(?)}

until convergence



Degeneracy

Complexity and Flexibility: Combinatorial properties of
high order dependence functions induce unintended
consequences.

» Each edge can be involved in n — 2 triangles

Degeneracy: Most probability mass concentrated on a few
networks, most commonly, the completely full or completely
empty network.

Avoid Degenerate Models!! They constitute completely
unrealistic characterizations of the data generating process.



5 node directed net with the number of Edges and Triangles
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Dealing with Degeneracy

Common Solution: use statistics that down-weight repeated
structures that involve the same edge.

Example: Transitivity
» Classic measure: Number of triangles in the network
> NijNigNji
ijk

» Prone to degeneracy. There are probably decreasing
marginal returns to indirect connections

» [ am probably not twice as likely to befriend the friend of
two of my friends as I am the friend of one of my friends.

> Geometrically Weighted Edgewise Shared Partners

n—2

3 {1 - (1 - e—¢ﬂ EP(N)

=1



Pre-Interpretation Checklist

» Assessing Convergence of Markov
Chains: Assures that the MC process is
accurate.

» Assessing Degeneracy: Assures you don'’t
report a degenerate model.

» Posterior predictive checking (i.e., gof):
Assures model fits the network well (i.e.,
you're not missing anything big).



Posterior Predictive Checks: Boxplots
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Three Thoughts on Specification

1. Specify baseline model from theory
2. Add so that data is not an outlier WRT model

3. Don’t curve-fit!



Running ERGMs

> spec4 <- ergm(adviceNet~edges+mutual+ostar(2:3)+gwesp(@,fixed=T)
+edgecov("reportsto")+nodeicov("Tenure")+nodeocov("Tenure")+absdiff("Tenure™)
+nodeicov("Age")+nodeocov("Age")+absdiff("Age"),

control=control.ergm(MCMC. samplesize=50000 ,MCMC.burnin=100000 ,MCMLE .maxit=10))



Checking Convergence: mcmc.diagnostics()

Sample statistics burn-in diagnostic (Geweke):

Chain 1
Fraction in 1st window = 0.1
Fraction in 2nd window = @.5
edges mutual ostar2 ostar3
-0.04568 -0.55592 -0.08828 -0.12607
gwesp edgecov.reportsto nodeicov.Tenure nodeocov.Tenure
-0.09754 0.45148 0.20936 0.12223
absdiff.Tenure nodeicov.Age nodeocov.Age absdiff.Age
0.72878 -0.02782 -0.16250 -0.56763
Individual P-values (lower = worse):
edges mutual ostar2 ostar3
0.9635690 0.5782674 0.9296563 0.8996785
gwesp edgecov.reportsto nodeicov.Tenure nodeocov.Tenure
0.9222977 0.6516459 0.8341710 0.9027132
absdiff.Tenure nodeicov.Age nodeocov.Age absdiff.Age
0.4661376 0.9778072 0.8709090 0.5702871

Joint P-value (lower = worse): 0.02416657 .



Checking Degeneracy:

summary (gof (spec4, GOF= model))

Goodness-of-fit for model statistics

edges

mutual

ostar2

ostar3
edgecov.reportsto
nodeicov.Tenure
nodeocov.Tenure
absdiff.Tenure
nodeicov.Age
nodeocov.Age
absdiff.Age

obs
190
45
1062
4322
19
2588
1871
1401
7514
7384
1732

min
133
24
542
1758
15
1971
1337
988
5394
5018
1156

mean

188
43

1044.
4250.

19

2563.
1849.

1386

7440.
7330.
1718.

.09
.62
81
62
.04
76
11
.93
83
23
62

max MC p-value

269
81
1922
9438
20
3488
2466
2019
10649
10469
2606

[SEASESESESESESESRES RN

.92
.80
.86
.84
.00
.96
.82
.80
.94
.86
.86



plot(gof ())

it

Checking F

Goodness-of-fit diagnostics
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plot(gof ())

it

Checking F

ICS

Goodness—of-fit diagnost
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Examining Results: summary ()

> summary(spec4)

Summary of model fit

Formula: adviceNet ~ edges + mutual + ostar(2:3) + gwesp(@, fixed = T) +
edgecov("reportsto") + nodeicov("Tenure") + nodeocov("Tenure") +
absdiff("Tenure") + nodeicov("Age") + nodeocov("Age") + absdiff("Age")

Iterations: 10

Monte Carlo MLE Results:
Estimate Std. Error MCMC % p-value

edges -3.656105 1.196786 0 0.002399 **
mutual 0.481182  0.345224 0 0.164129
ostar2 0.226369  0.099784 0 0.023814 *
ostar3 0.001898 0.010772 0 0.860255
gwesp.fixed.0 1.372966 0.753753 0 0.069262 .
edgecov.reportsto 3.774979  1.109190 0 0.000731 ***
nodeicov.Tenure 0.138554 0.023185 0 < le-04 ***
nodeocov.Tenure -0.022392 0.013914 0 0.108332
absdiff.Tenure -0.049885 0.019012 0 0.009021 **
nodeicov.Age -0.047557 0.019370 0 0.014498 *
nodeocov.Age 0.015321 0.009177 9 0.0995776
absdiff.Age -0.017134  0.015228 0 0.261174

Signif. codes: @ “***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Null Deviance: 582.2 on 420 degrees of freedom
Residual Deviance: 415.2 on 408 degrees of freedom

AIC: 439.2 BIC: 487.6 (Smaller is better.)



Goodreau, Kitts and Morris, Demography 2009

BIRDS OF A FEATHER, OR FRIEND OF A FRIEND?
USING EXPONENTIAL RANDOM GRAPH MODELS TO
INVESTIGATE ADOLESCENT SOCIAL NETWORKS*

STEVEN M. GOODREAU, JAMES A. KITTS, AND MARTINA MORRIS

In this article, we use newly developed statistical methods to examine the generative processes
that give rise to widespread patterns in friendship networks. The methods incorporate both traditional
demographic measures on individuals (age, sex, and race) and network measures for structural pro-
cesses operating on individual, dyadic, and triadic levels. We apply the methods to adolescent friend-
ship networks in 59 U.S. schools from the National Longitudinal Survey of Adolescent Health (Add
Health). We model friendship formation as a selection process constrained by individuals’ sociality
(propensity to make friends), selective mixing in dyads (friendships within race, grade, or sex catego-
ries are differentially likely relative to cross-category friendships), and closure in triads (a friend’s
friends are more likely to become friends), given local population composition. Blacks are generally
the most cohesive racial category, although when whites are in the minority, they display stronger
selective mixing than do blacks when blacks are in the minority. Hispanics exhibit disassortative
selective mixing under certain circumstances; in other cases, they exhibit assortative mixing but lack
the higher-order cohesion common in other groups. Grade levels are always highly cohesive, while
females form triangles more than males. We conclude with a discussion of how network analysis may
contribute to our understanding of sociodemographic structure and the processes that create it.



Goodreau, Kitts and Morris, Demography 2009

Figure 3.

Coeflicients From the Full Model, Plotted Across All 59 Schools
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Goodreau, Kitts and Morris, Demography 2009

Figure 7.  Hispanic Selective Mixing, by Proportion White: Full Model
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Figure 8.  Goodness-of-Fit Plots: “School 18”
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Wrap-up

» ERGM
» Evaluate relationship between network and node attributes
» Test for signature network structures (e.g., clusters)
» Nothing like it in the literature

» Extensions to be aware of

» Weighted/valude Ties
» Network time series
» Multipartite and “constrained” networks



