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Is Hagan a Likely Supporter of Burr?



What does it mean to model the network?

Construct a probability distribution that

accurately approximates the network



Why build models?

I Test hypotheses
Example: Does the organization’s network exhibit
clustering?

I Simulation for theoretical exploration
Example: How should seats be assigned in a classroom to
encourage cross-racial friendships?

I Tie prediction
Example: Will cross-departmental communication ties
persist?



Advantage of ERGM

Can model how ties depend upon
each other



Modeling Interdependence

Two Classes of Questions: Covariate and Interdependence

1. Covariate
I Do legislators in the same political party collaborate more

frequently than those in opposite parties?
I Do states with democratic governments have more alliances

than those with autocratic regimes?

2. Interdependence
I Are two states at war with the same third state less likely

to be at war with each other?
I Are there popularity effects in the choice of co-authors?

ERGM: integrate effects for any forms of (1) and (2) into a
unified model of a network.



Estimation

Finding parameter values that result in a
distribution that would have produced something
similar to what we observe.



Parametric Probabilistic Modeling
and the Likelihood Framework of Inference

We observe x, a draw of a random variable X..

X ∼ f(X,θθθ)

f is a family of probability distributions and θθθ is unknown.
X could be

I The dependent variable in a regression model

I An adjacency matrix

I The text in a document

θ̂θθMLE = arg max
θθθ

[f(x,θθθ)]

1. In many cases, θ̂θθMLE is asymptotically normally distributed

2. If f is exponential family, ln [f(x,θθθ)] globally concave in θθθ



The Exponential Random Graph Model (ERGM)

The probability (likelihood function) of observing network N is:

P(N,θθθ) =
exp{θθθ′h(N)}∑

N∗∈N exp{θθθ′h(N∗)}

Decomposition:

h(N)︸ ︷︷ ︸
Net Stats

θθθ︸︷︷︸
Effects

exp{θθθ′h(N)}︸ ︷︷ ︸
+ Weight

∑
N∗∈N

exp{θθθ′h(N∗)}︸ ︷︷ ︸
Normalizer

Flexible: h can capture virtually any form of interdependence
among the edges + covariates

Normalizing constant can make estimation difficult



ERGM Task List

What the Modeler Does:
I Conceptually defines dependencies that should/might exist

in the network.

I Defines (selects) empirical measures of those dependencies.
(i.e., h(N))

What ERGM Software Does:
I Finds most likely set of θθθ.

I Simulates networks so you can check model fit.



Definining h

How would we measure reciprocity?

A statistic we would expect to be high if ties were
reciprocated a lot and low if they were not
reciprocated.



Unpacking h
I Dyadic Covariate

hD(N,X) =
∑
ij

NijXij

I Sender Covariate

hV S(N,V S) =
∑
i

V Si
∑
j 6=i

Nij

I Receiver Covariate

hV R(N,V R) =
∑
i

V Ri
∑
j 6=i

Nji

I Reciprocity

hR(N) =
∑
i<j

NijNji



Unpacking h

I Popularity

hP (N) =
∑
i,j,k

NjiNki +NkjNij +NikNjk

I Sociality

hS(N) =
∑
i,j,k

NijNik +NjkNji +NkiNkj



Unpacking h

I Transitivity

hT (N) =
∑
i

∑
i 6=j,k

NijNikNjk

I For detailed discussions on the selection of network
statistics, see Snijders et al. (2006) and Goodreau (2007)



Interpretation of ERGM

ERGM offers an incredibly flexible model – it can be used to
investigate individual, dyad, node and network level effects.

Two levels of interpretation

1. (Network) The relative likelihood of observing N j+ to
observing N j is exp(θj), where

I θj is the estimate of the parameter that corresponds to
statistic j.

I N j+ is one unit greater than N j on statistic j (e.g., one
more closed triangle, one more edge), ceteris paribus.

2. (Edge) P (Nij = 1|N−ij ,θ) = logit−1
(∑k

r=1 θrδ
(ij)
r (N)

)
I N−ij indicates the network excluding Nij

I δ
(ij)
r (N) is equal to the change in hr when Nij is changed

from zero to one
I logit−1(x) = 1/(1 + exp(−x)) (i.e., inverse logit function)
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ERGM (ML)Estimation

ML Estimation is very attractive because ERGM is a
canonical exponential family form

I Globally concave loglikelihood

I h is minimally sufficient for θθθ

I θ̂θθ is asymptotically normal

Estimation requires we confront...
∑

N∗∈N exp{θθθ′h(N∗)}
Sum over m networks...

Nodes m (i.e., unique undirected networks)

5 1,024
10 35,184,370,000,000
15 40,564,820,000,000,000,000,000,000,000,000



Simulation-based MLE
I Normalizer is s a sum over a population of m networks.
I Solution: approximate with a random sample of networks.

Markov Chain Monte Carlo Maximum Likelihood
m is the MCMC sample size
v is the number of vertices in the network
θθθ[0] = 0 or θθθ[MPLE]

i = 0
repeat
i = i+ 1
draw Ñ ∼ P(N , θθθ[i−1]) by MCMC, m networks with v
vertices
Ĉ(θθθ) = ln

(∑m
j=1 exp

[
(θθθ − θθθ[i−1])′h(Ñj)

])
θθθ[i] = arg maxθθθ

[∑n
t=1 θθθ

′h(Nt)− Ĉ(θθθ)
]

until convergence



Degeneracy

Complexity and Flexibility: Combinatorial properties of
high order dependence functions induce unintended
consequences.

I Each edge can be involved in n− 2 triangles

Degeneracy: Most probability mass concentrated on a few
networks, most commonly, the completely full or completely
empty network.

Avoid Degenerate Models!! They constitute completely
unrealistic characterizations of the data generating process.



5 node directed net with the number of Edges and Triangles

θE = 0.50, θT = 0 θE = 0.50, θT = 0.125
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θE = 0.50, θT = 0.25 θE = 0.50, θT = 0.50
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Dealing with Degeneracy
Common Solution: use statistics that down-weight repeated
structures that involve the same edge.

Example: Transitivity

I Classic measure: Number of triangles in the network∑
ijk

NijNikNjk

I Prone to degeneracy. There are probably decreasing
marginal returns to indirect connections

I I am probably not twice as likely to befriend the friend of
two of my friends as I am the friend of one of my friends.

I Geometrically Weighted Edgewise Shared Partners

n−2∑
i=1

[
1−

(
1− e−φ

)i]
EPi(N)



Pre-Interpretation Checklist

I Assessing Convergence of Markov
Chains: Assures that the MC process is
accurate.

I Assessing Degeneracy: Assures you don’t
report a degenerate model.

I Posterior predictive checking (i.e., gof):
Assures model fits the network well (i.e.,
you’re not missing anything big).



Posterior Predictive Checks: Boxplots



Three Thoughts on Specification

1. Specify baseline model from theory

2. Add so that data is not an outlier WRT model

3. Don’t curve-fit!



Running ERGMs



Checking Convergence: mcmc.diagnostics()



Checking Degeneracy:
summary(gof(spec4, GOF= model))



Checking Fit: plot(gof())



Checking Fit: plot(gof())
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Examining Results: summary()



Goodreau, Kitts and Morris, Demography 2009



Goodreau, Kitts and Morris, Demography 2009



Goodreau, Kitts and Morris, Demography 2009



Goodreau, Kitts and Morris, Demography 2009



Goodreau, Kitts and Morris, Demography 2009



Wrap-up

I ERGM
I Evaluate relationship between network and node attributes
I Test for signature network structures (e.g., clusters)
I Nothing like it in the literature

I Extensions to be aware of
I Weighted/valude Ties
I Network time series
I Multipartite and “constrained” networks


